Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122050, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36495682

RESUMO

This study describes the synthesis of new pyromellitic diimide (PMDI) derivatives obtained in good yields from the reaction between pyromellitic dianhydride and aminobenzazoles reactive to proton-transfer in the excited state (ESIPT). In this investigation, a non-ESIPT PMDI was also prepared for comparison. These compounds presented absorption maxima in the ultraviolet region attributed to the allowed 1π-π* electronic transitions. Redshifted absorptions were observed for the ESIPT compounds (3b-3c) due to their π-extended conjugation if compared to the non-ESIPT dye (3a). The compounds presented fluorescence emissions between 300 and 600 nm, dependent on the solvent polarity and their chemical structures. While compound 3a presents a single emission, a dual fluorescence could be observed for compounds 3b-3c. As expected for ESIPT compounds, the emission at higher energies could be related to the excited enol conformer (E*), and the emission with a large Stokes shift was attributed to the keto tautomer (K*). All compounds presented fluorescence emission in the solid state, whereas the ESIPT derivatives presented redshifted emissions with a large Stokes shift, as expected. Cyclic voltammetry was employed to investigate the electrochemical properties of these compounds. The HOMO and LUMO energy levels were estimated at -5.40 to -5.00 eV and -2.84 to -2.62 eV, and good thermal stability (Td > 150 °C) was observed. Quantum chemical calculationsusingTD-DFT and DFT were performed to investigate the electronic and photophysical features of the molecules.

2.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551080

RESUMO

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Nanopartículas Metálicas , Ouro/química , Troponina I , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Limite de Detecção
3.
Eur J Med Chem ; 243: 114687, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36057237

RESUMO

Chagas Disease is caused by the protozoan Trypanosoma cruzi and is considered a tropical neglected disease by the World Health Organization (WHO). The main drugs used in the therapy of the disease are obsolete and, as a result, it still kills millions of people every year. Therefore, the development of new drugs is urgent, as is the research reported in this article, in which new triazole selenides were synthesized through a simple methodology and to evaluate their potential against T. cruzi, through a combination of in vitro and in silico assays. With the combination of two molecular scaffolds already known for this activity, sixteen new hybrid compounds were obtained, showing yields ranging from 40 to 90%, and their biological potentials were tested. Two of the evaluated hybrids showed potent trypanocidal activity (11m and 11n), comparable to the positive control benznidazole. Density functional theory (DFT) studies were correlated with cyclic voltammetry assays to investigate the LUMO energy, which demonstrated a correlation with the observed trypanocidal activity. These results are promising, considering 11m and 11n as hit compounds in the development of new antichagasic drugs.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Triazóis/farmacologia , Triazóis/uso terapêutico , Doença de Chagas/tratamento farmacológico
4.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35337130

RESUMO

Carajurin is the main constituent of Arrabidaea chica species with reported anti-Leishmania activity. However, its mechanism of action has not been described. This study investigated the mechanisms of action of carajurin against promastigote forms of Leishmania amazonensis. Carajurin was effective against promastigotes with IC50 of 7.96 ± 1.23 µg.mL-1 (26.4 µM), and the cytotoxic concentration for peritoneal macrophages was 258.2 ± 1.20 µg.mL-1 (856.9 µM) after 24 h of treatment. Ultrastructural evaluation highlighted pronounced swelling of the kinetoplast with loss of electron-density in L. amazonensis promastigotes induced by carajurin treatment. It was observed that carajurin leads to a decrease in the mitochondrial membrane potential (p = 0.0286), an increase in reactive oxygen species production (p = 0.0286), and cell death by late apoptosis (p = 0.0095) in parasites. Pretreatment with the antioxidant NAC prevented ROS production and significantly reduced carajurin-induced cell death. The electrochemical and density functional theory (DFT) data contributed to support the molecular mechanism of action of carajurin associated with the ROS generation, for which it is possible to observe a correlation between the LUMO energy and the electroactivity of carajurin in the presence of molecular oxygen. All these results suggest that carajurin targets the mitochondria in L. amazonensis. In addition, when assessed for its drug-likeness, carajurin follows Lipinski''s rule of five, and the Ghose, Veber, Egan, and Muegge criteria.

5.
Anal Chim Acta ; 1139: 198-221, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33190704

RESUMO

The detection of phenolic compounds is relevant not only for their possible benefits to human health but also for their role as chemical pollutants, including as endocrine disruptors. The required monitoring of such compounds on-site or in field analysis can be performed with electrochemical biosensors made with polyphenol oxidases (PPO). In this review, we describe biosensors containing the oxidases tyrosinase and laccase, in addition to crude extracts and tissues from plants as enzyme sources. From the survey in the literature, we found that significant advances to obtain sensitive, robust biosensors arise from the synergy reached with a diversity of nanomaterials employed in the matrix. These nanomaterials are mostly metallic nanoparticles and carbon nanostructures, which offer a suitable environment to preserve the activity of the enzymes and enhance electron transport. Besides presenting a summary of contributions to electrochemical biosensors containing PPOs in the last five years, we discuss the trends and challenges to take these biosensors to the market, especially for biomedical applications.


Assuntos
Técnicas Biossensoriais , Monofenol Mono-Oxigenase , Nanoestruturas , Carbono , Técnicas Eletroquímicas , Lacase
6.
Front Chem ; 8: 360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478032

RESUMO

Herein, we report the synthesis and characterization of fluorophores containing a 2,1,3-benzoxadiazole unit associated with a π-conjugated system (D-π-A-π-D). These new fluorophores in solution exhibited an absorption maximum at around ~419 nm (visible region), as expected for electronic transitions of the π-π* type (ε ~2.7 × 107 L mol-1 cm-1), and strong solvent-dependent fluorescence emission (ΦFL ~0.5) located in the bluish-green region. The Stokes' shift of these compounds is ca. 3,779 cm-1, which was attributed to an intramolecular charge transfer (ICT) state. In CHCl3 solution, the compounds exhibited longer and shorter lifetimes, which was attributed to the emission of monomeric and aggregated molecules, respectively. Density functional theory was used to model the electronic structure of the compounds 9a-d in their excited and ground electronic states. The simulated emission spectra are consistent with the experimental results, with different solvents leading to a shift in the emission peak and the attribution of a π-π* state with the characteristics of a charge transfer excitation. The thermal properties were analyzed by thermogravimetric analysis, and a high maximum degradation rate occurred at around 300°C. Electrochemical studies were also performed in order to determine the band gaps of the molecules. The electrochemical band gaps (2.48-2.70 eV) showed strong correlations with the optical band gaps (2.64-2.67 eV).

7.
Dyes Pigm ; 180: 108519, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32382200

RESUMO

A series of selenylated-oxadiazoles were prepared and their interaction with DNA was investigated. The photophysical studies showed that all the selenylated compounds presented absorption between 270 and 329 nm, assigned to combined n→π* and π→π* transitions, and an intense blue emission (325-380 nm) with quantum yield in the range of Φ F = 0.1-0.4. DFT and TD-DFT calculations were also performed to study the likely geometry and the excited state of these compounds. Electrochemical studies revealed the ionization potential energies (-5.13 to -6.01 eV) and electron affinity energies (-2.25 to -2.83 eV), depending directly on the electronic effect (electron-donating or electron-withdrawing) of the substituent attached to the product. Finally, the UV-Vis DNA interaction experiments indicated that the compounds can interact with the DNA molecule due to intercalation, except for 3g (which interacted via electrostatic interaction). Plasmid cleavage assay presented positive results only for 3f that presented the strongest interaction results. These results made the tested selenylated-oxadiazoles as suitable structures for the development of drugs and the design of structurally-related therapeutics.

8.
Curr Top Med Chem ; 20(3): 182-191, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31868147

RESUMO

BACKGROUND: In general, fungal species are characterized by their opportunistic character and can trigger various infections in immunocompromised hosts. The emergence of infections associated with high mortality rates is due to the resistance mechanisms that these species develop. METHODS: This phenomenon of resistance denotes the need for the development of new and effective therapeutic approaches. In this paper, we report the investigation of the antioxidant and antifungal behavior of dimeric naphthoquinones derived from lawsone whose antimicrobial and antioxidant potential has been reported in the literature. RESULTS: Seven fungal strains were tested, and the antioxidant potential was tested using the combination of the methodologies: reducing power, total antioxidant capacity and cyclic voltammetry. Molecular docking studies (PDB ID 5V5Z and 1EA1) were conducted which allowed the derivation of structureactivity relationships (SAR). Compound 1-i, derived from 3-methylfuran-2-carbaldehyde showed the highest antifungal potential with an emphasis on the inhibition of Candida albicans species (MIC = 0.5 µg/mL) and the highest antioxidant potential. CONCLUSION: A combination of molecular modeling data and in vitro assays can help to find new solutions to this major public health problem.


Assuntos
Antifúngicos/farmacologia , Antioxidantes/farmacologia , Candida albicans/efeitos dos fármacos , Simulação de Acoplamento Molecular , Naftoquinonas/farmacologia , Teoria Quântica , Antifúngicos/síntese química , Antifúngicos/química , Antioxidantes/síntese química , Antioxidantes/química , Reparo do DNA , Dimerização , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
9.
Bioconjug Chem ; 25(9): 1638-43, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25111622

RESUMO

A nanostructured immunosensor based on the liquid crystal (E)-1-decyl-4-[(4-decyloxyphenyl)diazenyl]pyridinium bromide (Br-Py) and gold nanoparticles supported by the water-soluble hybrid material 3-n-propyl-4-picolinium silsesquioxane chloride (AuNP-Si4Pic(+)Cl(-)) was built for the detection of troponin T (cTnT), a cardiac marker for acute myocardial infarction (AMI). The functionalized nanostructured surface was used to bind anti-cTnT monoclonal antibodies through electrostatic interaction. The immunosensor (ab-cTnT/AuNP-Si4Pic(+)Cl(-)/Br-Py/GCE) surface was characterized by microscopy techniques. The electrochemical behavior of the immunosensor was studied by cyclic voltammetry and electrochemical impedance spectroscopy. A calibration curve was obtained by square-wave voltammetry. The immnunosensor provided a limit of detection of 0.076 ng mL(-1) and a linear range between 0.1 and 0.9 ng mL(-1) (appropriate for AMI diagnosis).


Assuntos
Técnicas Biossensoriais/métodos , Ouro/química , Imunoensaio/métodos , Cristais Líquidos/química , Nanopartículas Metálicas/química , Compostos de Organossilício/química , Troponina T/análise , Calibragem , Eletroquímica , Humanos , Compostos de Piridínio/química , Reprodutibilidade dos Testes
10.
Biosens Bioelectron ; 59: 127-33, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24721423

RESUMO

A label-free electrochemical immunosensor based on the ionic liquid crystal (E)-1-decyl-4-[(4-decyloxyphenyl)diazenyl]pyridinium bromide (Br-Py) coated on a glassy carbon electrode (GCE) for the quantitative detection of myoglobin (Mb), a cardiac marker for acute myocardial infarction, is reported herein for the first time. The monoclonal anti-myoglobin antibody (ab-Mb) was covalently immobilized using glyoxal on a film of polyethyleneimine-coated gold nanoparticles (AuNP-PEI). The proposed method for Mb detection is based on voltammetric suppression of the Br-Py signal when the immunosensor was incubated with Mb antigen. The electrochemical performance of the Mb immunosensor was studied by electrochemical impedance spectroscopy, and cyclic and square-wave voltammetry. Under the optimal conditions, the proposed immunosensor shows a good linear relationship between the electrochemical inhibition response and the concentration of Mb over the range of 9.96-72.8 ng mL(-1) with a detection limit of 6.29 ng mL(-1). The results obtained indicate that the proposed immunosensor provides good sensitivity and simple operation for detecting acute myocardial infarction with Mb as a biomarker.


Assuntos
Técnicas Eletroquímicas/instrumentação , Ouro/química , Imunoensaio/instrumentação , Cristais Líquidos/química , Nanopartículas Metálicas/química , Mioglobina/sangue , Anticorpos Imobilizados/química , Humanos , Limite de Detecção , Modelos Moleculares , Mioglobina/análise , Polietilenoimina/química
11.
Analyst ; 138(2): 509-17, 2013 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-23166910

RESUMO

A bio-inspired complex, [(bpbpmp)Fe(III)(m-OAc)(2)Cu(II)](ClO(4)), was combined with a zwitterionic surfactant (ImS3-14) stabilizing pre-formed palladium nanoparticles and coated on a glassy carbon electrode (GCE). This bio-inspired surfactant film was capable of catalyzing redox reactions of dihydroxybenzenes, thus allowing the simultaneous electrochemical quantification of CC and HQ in cigarette residue samples by square-wave voltammetry (SWV). The best experimental conditions were obtained using phosphate buffer solution (0.1 mol L(-1), pH 7.0), with 1.3 nmol of the bio-inspired complex, 0.15 µmol of the surfactant and 1.08 nmol of Pd. The best voltammetric parameters were: frequency 100 Hz, pulse amplitude 40 mV and step potential 8 mV. The limits of detection calculated from simultaneous curves were found to be 2.2 × 10(-7) and 2.1 × 10(-7) mol L(-1) for HQ and CC respectively.


Assuntos
Técnicas Biossensoriais , Catecóis/análise , Poluentes Ambientais/análise , Hidroquinonas/análise , Fenol/química , Catecóis/química , Poluentes Ambientais/química , Compostos Férricos , Hidroquinonas/química , Chumbo/química , Nanopartículas Metálicas/química , Oxirredução , Paládio/química , Tensoativos/química , Alcatrões/análise , Alcatrões/química
12.
Analyst ; 136(12): 2495-505, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21519593

RESUMO

Gold nanoparticles dispersed in 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid (Au-BMI·PF(6)) were supported in chitin (CTN) chemically crosslinked with glyoxal and epichlorohydrin to obtain a new supported ionic liquid phase (SILP) catalyst with high catalytic activity, and providing an excellent environment for enzyme immobilization. This modified biopolymer matrix (Au-BMI·PF(6)-CTN) was used as a support for the immobilization of the enzyme peroxidase (PER) from pea (Pisum sativum), and employed to develop a new biosensor for rosmarinic acid (RA) determination in pharmaceutical samples by square-wave voltammetry. In the presence of hydrogen peroxide, the PER catalyzes the oxidation of RA to the corresponding o-quinone, which is electrochemically reduced at a potential of +0.14 V vs. Ag/AgCl. Under optimized conditions, the resulting peak current increased linearly for the RA concentration range of 0.50 to 23.70 µM with a detection limit of 70.09 nM. The biosensor demonstrated high sensitivity, good repeatability and reproducibility, and long-term stability (15% decrease in response over 120 days). The method was successfully applied to the determination of RA content in pharmaceutical samples, with recovery values being in the range of 98.3 to 106.2%. The efficient analytical performance of the proposed biosensor can be attributed to the effective immobilization of the PER enzyme in the modified CTN matrix, the significant contribution of the high conductivity of the ionic liquid, the facilitation of electron transfer promoted by gold nanoparticles, and the inherent catalytic ability of these materials.


Assuntos
Biopolímeros/química , Técnicas Biossensoriais/métodos , Cinamatos/análise , Depsídeos/análise , Ouro/química , Líquidos Iônicos/química , Nanopartículas Metálicas/química , Biocatálise , Quitina/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Peróxido de Hidrogênio/química , Oxirredução , Peroxidase/química , Peroxidase/metabolismo , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...